.........

Lecture 24:
Unsolvable Problems
Part 2 of 2

Outline for Today

« More on Undecidability
 Even more problems we can’t solve.
A Different Perspective on RE
 What exactly does “recognizability” mean?
» Verifiers
* A new approach to problem-solving.

- Beyond RE

* A beautiful example of an impossible problem.

Recap from Last Time

bool willAccept(string function, string input) {
// Returns true if function(input) returns true.
// Returns false otherwise.

}

bool trickster(string input) {
string me = /* source code of trickster */;
return !willAccept(me, input);

}

A decider for Arvm has to have this behavior.

trickster(input) returns true

g

willAccept(me, input) returns true 3

g

trickster(input) does not return trueJ

Because of how we wrote trickster.

trickster willAccept

Theorem: Arv € R.

Proof: By contradiction; assume that Arm € R. Then there is a decider D for Arwm.
We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then returns
true if function(w) returns true and returns false otherwise. Given this, consider
this function trickster:

bool trickster(string input) {
string me = /* source code of trickster */;
return !willAccept(me, input);

}

Since willAccept decides Arv and me holds the source of trickster, we know that
willAccept(me, input) returns true if and only if trickster(input) returns true.
Given how trickster is written, we see that
willAccept(me, input) returns true if and only if trickster(input) doesn’t return true.
This means that
trickster(input) returns true if and only if trickster(input) doesn’t return true.

This is impossible. We’ve reached a contradiction, so our assumption was wrong
and Aryv is undecidable. B

Regular

Languages

All Languages

New Stuff!

More Impossibility Results

The Halting Problem

* The most famous undecidable problem is the halting
problem, which asks:

Given a TM M and a string w,
will M halt when run on w?

* As a formal language, this problem would be
expressed as

HALT = { (M, w) | M is a TM that halts on w }
« Theorem: HALT is recognizable, but undecidable.

 There’s a recognizer for HALT.
» There is no decider for HALT.

HALT € RE

* Claim: HALT € RE.

» Idea: If you were certain that a TM M halted on a
string w, could you convince me of that?

* Yes - just run M on w and see what happens!

bool recognizeIfHalts(string TM, string w) {
set up a simulation of M running on w;
while (true) {
if (M returned true) return true;
else if (M returned false) return true;
else simulate one more step of M running on w;

}

}

Theorem: The halting problem is
undecidable.

A Decider for HALT

« Let’s suppose that, somehow, we managed to build a decider
for HALT = { (M, w) | M is a TM that halts on w }.

 Schematically, that decider would look like this:

M Yes, M halts on w.
Decider
vy, for HALT
No, M loops on w.

 We could represent this decider in software as a method

bool willHalt(string function, string input);
that takes as input a function function and a string input, then

« returns true if function(input) returns anything (halts), and
» returns false if function(input) never returns anything (loops).

}

while (true) {
// Do nothing

}
} else {

return true;

trickster willHalt

bool willHalt(string function, string input) {
// Returns true if function(input) halts.
// Returns false otherwise.

bool trickster(string input) {
string me = /* source code of trickster */;

if (willHalt(me, input)) {

A decider for HALT must do this.

trickster(input) halts

A

WillHalt(me, input) returns true 3

Lo

trickster(input) loops

We wrote trickster to have this behavior.

Theorem: HALT ¢ R.

Proof: By contradiction; assume that HALT € R. Then there is a decider D for
HALT. We can represent D as a function

bool willHalt(string function, string w);

that takes in the source code of a function function and a string w, then returns
true if function(w) halts and returns false otherwise. Given this, consider this
function trickster:

bool trickster(string input) {
string me = /* source code of trickster */;
if (willHalt(me, input)) {
while (true) { }
} else {
return true;
}

}

Since willHalt decides HALT and me holds the source of trickster, we know that
willHalt(me, input) returns true if and only if trickster(input) halts.
Given how trickster is written, we see that
willHalt(me, input) returns true if and only if trickster(input) loops.
This means that
trickster(input) halts if and only if trickster(input) loops.

This is impossible. We’ve reached a contradiction, so our assumption was wrong
and HALT is undecidable. H

Regular

Languages

HALT

All Languages

So What?

 These problems might not seem all that
exciting, so who cares if we can't solve
them?

 Turns out, this same line of reasoning
can be used to show that some very
important problems are impossible to
solve.

Engineering Problem: Design a diesel engine that
doesn’t emit lots of NOx pollutants.

Qﬁﬁ —

Engineering Prowess! Awesome Engine!

Regulatory Problem: Design a testing procedure that, given a
diesel engine, determines whether it emits lots of NOx pollutants.

. ®

Engine Testing
~@

Regimen

Fact: Almost all “regulatory problems”

about computer programs are undecidable.

That is, almost all problems of the form

“does program X have [behavior Y]” are
undecidable.

This can be formalized through a result
called Rice’s Theorem; take CS154 for
details!

A (Topical) Example

Secure Voting

* Suppose that you want to make a voting machine for
use in an election between two parties (the Zomp
Party and the Puce Party).

« Let X = {z, p}. A string w € 2* corresponds to a series
of votes for the candidates.

 Example: zzpppzp means “two people voted for z, then
three people voted for p, then one more person voted
for z, then one more person voted for p.”

* A secure voting machine is a TM that takes as input
a string of z's and p's, then reports whether person z
won the election.

« “Secure” in the sense of “actually checks the vote totals” as
opposed to rigging the election, discounting votes, etc.

A secure voting machine is a TM M where
M accepts w € {z, p}*if and only if w has more z’s than p’s.

bool bee(string input) { bool topaz(string input) {
int numZs = countZsIn(input); return input != "" &&
int numPs = countPsIn(input); input[0] == 'z';

}

return numZs > numPs;

}

Which of these are secure voting
machines? Answer at
https://cs103.stanford.edu/pollev

bool anna(string input) { bool green(string input) {
int numZs = countZsIn(input); int n = input.length();
int numPs = countPsIn(input); while (n > 1) {

if (n %2 ==0)n /= 2;
if (numZs = numPs) { else n = 3*n + 1;
return false; }

} else if (numZs < numPs) {

return false: int numZs = countZsIn(input);
} else { ’ int numPs = countPsIn(input);
return true; return numZs > numPs;

} }
}

https://cs103.stanford.edu/pollev

Secure Voting

* As you can see, it can be hard to tell whether
a candidate program is a secure voting
machine.

* Could we automatically check if a voting
machine is secure?

* Question: Given a TM that someone claims is
a secure voting machine, could we
automatically check whether it actually is a
secure voting machine?

« This is a “regulatory” problem, not an
“engineering” problem.

A Decider tor Secure Voting

 Suppose that, somehow, we built a decider that can test if
an arbitrary TM is a secure voting machine.

« Schematically, that decider would look like this:

Yes, M is a secure voting
for secure
voting
No, M is not a secure
voting machine.

 We could represent this decider in software as a method
bool isSecureVotingMachine(string function);

that takes as input a function, then returns whether that
function is a secure voting machine.

bool isSecureVotingMachine(string function) {
// Returns whether function accepts only
/] strings with more z’s than p’s.

}

bool trickster(string input) {
string me = /* source code of trickster */;

if (isSecureVotingMachine(me)) {
return countZsIn(input) <= countPsIn(input);

} else {
return countZsIn(input) > countPsIn(input);

trickster is a secure voting machine

L

isSecureVotingMachine(me) returns true

L

trickster isn’t a secure voting machine.

trickster isSecureVotingMachine

Theorem: The secure voting problem is undecidable.

Proof: By contradiction; there is a decider D for the secure voting problem. We can
represent D as a function

bool isSecureVotingMachine(string function);

that takes in the source code of a function function, then returns whether function is a
secure voting machine (that is, whether it accepts precisely the strings with more z’s than
p’s). Given this, consider this function trickster:

bool trickster(string input) {
string me = /* source code of trickster */;
if (isSecureVotingMachine(me)) {
return /* if input has at most as many z’s as p’s */;

} else {
return /* if input has more z’s than p’s */;
}

}

Since isSecureVotingMachine decides the secure voting problem and me holds the source of
trickster, we know that

isSecureVotingMachine(me) returns true if and only if trickster is a secure voting machine.
Given how trickster is written, we see that
isSecureVotingMachine(me) returns true if and only if trickster isn’t a secure voting machine
This means that

trickster is a secure voting machine if and only if trickster isn’t a secure voting machine.

This is impossible. We’ve reached a contradiction, so our assumption was and the secure
voting problem is undecidable.

Interpreting this Result

 The previous argument tells us that there is no general
algorithm that we can follow to determine whether a
program is a secure voting machine. In other words, any
general algorithm to check voting machines will always be
wrong on at least one input.

e So what can we do?

* Design algorithms that work in some, but not all cases. (This is
often done in practice.)

« Fall back on human verification of voting machines. (We do that
too.)

« Carry a healthy degree of skepticism about electronic voting
machines. (Then again, did we even need the theoretical result
for this?)

* Worth a read:

https://xkcd.com/2030/

Beyond R and RE

What exactly is the class RE?

RE, Formally

« Recall that the class RE is the class of all
recognizable languages:

RE = { L | there is a TM M that recognizes L }

* Since R # RE, there is no general way to
“solve” problems in the class RE, if by “solve”
you mean “make a computer program that can
always tell you the correct answer.”

 So what exactly are the sorts of languages in
RE?

Key Intuition:

A language L is in RE if, for any string w, it
you are convinced that w € L, there is some
way you could prove that to someone else.

Example: Where’s Waldo?

NS | e s A

. (7
tue®

“HS {

Verification

(o2 N B\

3 1 111 1 9

6 1 5|1 3 1]8 1
11111 1 1112 1
8 1 2|1 1 115 1|4
1 1 . 312 1711 18
5 7 114 1 1|11 1

Does this Sudoku puzzle
have a solution?

Verification

Does this Sudoku puzzle

have a solution?

Verification

11

Try vunning five steps ot the Hailstone sequence.

Does the hailstone sequence
terminate for this number?

Verification

11

Try running fourfeen steps of the Hailstfone sequence,

Does the hailstone sequence
terminate for this number?

Verification

x>+ Yy + 25 =137

Pick the following:

x=3 y=-5 z=6

Are there integers x, y, and z where
the above statement is true?

Verification

x>+ Yy + 25 =137

Pick the following:

x=-9 y=-11 z=13

Are there integers x, y, and z where
the above statement is true?

Verification

 Here’s code for simulating the hailstone sequence. No one knows
whether it always terminates.

bool hailstone(int n) {
if (n <= 0) return false;
while (n !'= 1) {
ifF(n%2==0)n/=2;
else n = 3*n + 1;

}

return true;

}

* The following doesn’t solve hailstone, but instead checks
whether a given number of steps is correct. It always terminates.

bool checkHailstone(int n, int numSteps) {

if (n <= 0) return false;

for (int 1 = 0; 1 < numSteps; 1™Y { Note tThe exfra
if (n%2==0)n /= 2;
else n = 3*n + 1; parameter,

}

return n == 1;

Verification

 Here’s code that searches for three cubes that sum to a
target. It loops if the n isn’t the sum of three cubes.

bool isCubeSum(int n) {
for (int max = 0; ; max++)
for (int x = -max; X <= max; X++)
for (Int y = -max; y <= max; y++)
for (int z = -max; z <= max; z++)
1f (X*X*X + y*y*y + z*z*z == n) return true;

}

» The following doesn’t solve the sum of cubes problems,
but instead checks whether three numbers sum to the
target. It always terminates.

bool checkCubeSum(int n, int x, int y, int z) {
return X*x*x + y*y*y + Z*¥Z*Z =% N;

} Note The extra
paramelers,

Verifiers

* A verifier for a language Lisa TM V
with the following two properties:

V halts on all inputs.
Vwe 3X* (weL o dc € 2*. Vaccepts (w, c))

* Intuitively, what does this mean?

Deciders and Verifiers

input string (w)

-

“Solve the problem”

& D

Decider M
for L

< 4

M halts on all inputs.
w € L & M accepts w

input string (w)

certificate (c)

>

w € L o dc € 2*, V accepts (w, c)

-

“Check an answer”

@ D

Verifier V
for L

A >
V halts on all inputs.

If M accepts, then
w € L.

If M rejects, then
w & L.

If V accepts (w, c),
then w € L.

If V rejects (w, c),
we don't know
whether w € L.

bool checkHailstone(int n, int numSteps) {
if (n <= 0) return false;
for (int 1 = 0; 1 < numSteps; i1++) {
if (n% 2 ==0) n /= 2;
else n = 3*n + 1;

¥

return n == 1;

bool checkCubeSum(int n, int x, int y, int z) {
return xX*x*x + vy y*y + z*z* == n;
}

Verifiers

* A verifier for a language L is a TM V with the
following properties:

V halts on all inputs.
Vwe X*, (weL o dc € 2*. Vaccepts (w, c))
 Some notes about V:
« If V accepts (w, c), we're guaranteed w € L.

» If Vrejects (w, c), then either

- w € L, but you gave the wrong c, or
- w & L, so no possible ¢ will work.

Verifiers

* A verifier for a language L is a TM V with the
following properties:

V halts on all inputs.
Vwe 3X* (weL o dc € 2*. Vaccepts (w, c))
« Some notes about V:

* Notice that the certificate c is existentially
quantified. Any string w € L. must have at least
one c that causes V to accept, and possibly
more.

* Vis required to halt, so given any potential
certificate ¢ for w, you can check whether the
certificate is correct.

Verifiers

* A verifier for a language L is a TM V with the
following properties:

V halts on all inputs.
Vwe 3X* (weL o dc € 2*. Vaccepts (w, c))
« Some notes about V:

e Notice that Visn’t a decider for L and isn’t a
recognizer for L.

* The job of V' is just to check certificates, not to
decide membership in L.

Verifiers

* A verifier for a language L is a TM V with the
following properties:

V halts on all inputs.

Vwe 3X* (weL o dc € 2*. Vaccepts (w, c))
« Some notes about V:

* Although this formal definition works with a

string ¢, remember that ¢ can be an encoding of
some other object.

* In practice, ¢ will likely just be “some other
auxiliary data that helps you out.”

What languages are verifiable?

Theorem: If L is a language, then there is
a verifier for L if and only if L. € RE.

Proof: Appendix!

RE and Proofs

» Verifiers and recognizers give two different
perspectives on the “proot” intuition for RE.

» Verifiers are explicitly built to check proofs that
strings are in the language.

 If you know that some string w belongs to the
language and you have the prooft of it, you can
convince someone else that w € L.

* Recognizers can be thought of as devices that
“search” for a proof that w € L.

 If it finds it, great!
 If not, it might loop forever.

RE and Proofs

 If the RE languages represent languages where
membership can be proven, what does a non-RE
language look like?

 Intuitively, a language is not in RE if there is no
general way to prove that a given string w € L
actually belongs to L.

* In other words, even if you knew that a string was
in the language, you may never be able to
convince anyone of it!

Finding Non-RE Languages

Recognizers and Recognizability

* Recall: We say that M is a recognizer for L if
the following is true:

Vwe X*, weLlL o M accepts w).

 Some of these strings w, by pure coincidence,
will be encodings of Turing machines.

 What happens if we list off all Turing
machines, looking at how those TMs behave
given other TMs as input?

Mo

M

M:>

M3

Ma

Ms

All Turing machines,
listed in some order.

(Mo) (M1) (M2) (Ms) (Ma4) (Ms) ...
Mo _
M
M-
- T

All. TM source

Ma code, listed in
Ms the same order,

(Mo)

(M)

(M2)

(M3)

(Ma)

(Ms) ...

Mo

Acc

No

No

Acc

Acc

No

M

Acc

Acc

Acc

Acc

Acc

Acc ...

M:>

Acc

Acc

Acc

Acc

Acc

Acc ...

M3

No

Acc

Acc

No

Acc

Acc ...

Ma

Acc

No

Acc

No

Acc

No

Ms

No

No

Acc

Acc

No

No

No

No

No

Acc

No

Acc ...

Flip all *accept”
to *no* and

vice—versa

(Mo)

(M)

(M2)

(M3)

(Ma)

(Ms) ...

Mo

Acc

No

No

Acc

Acc

No

M

Acc

Acc

Acc

Acc

Acc

Acc ...

M:>

Acc

Acc

Acc

Acc

Acc

Acc ...

M3

No

Acc

Acc

No

Acc

Acc ...

Ma

Acc

No

Acc

No

Acc

No

Ms

No

No

Acc

Acc

No

No

No

No

No

Acc

No

Acc ...

No TM has
This behavior!

(Mo)

(M)

(M2)

(M3)

(Ma)

(Ms) ...

Mo

Acc

No

No

Acc

Acc

No

M

Acc

Acc

Acc

Acc

Acc

Acc ...

M:>

Acc

Acc

Acc

Acc

Acc

Acc ...

M3

No

Acc

Acc

No

Acc

Acc ...

Ma

Acc

No

Acc

No

Acc

No

Ms

No

No

Acc

Acc

No

No

No

No

No

Acc

No

Acc ...

“The language of all
TMs that do not accept
their source code.”

(Mo)

(M)

(M2)

(M3)

(Ma)

(Ms) ...

Mo

Acc

No

No

Acc

Acc

No

M

Acc

Acc

Acc

Acc

Acc

Acc ...

M:>

Acc

Acc

Acc

Acc

Acc

Acc ...

M3

No

Acc

Acc

No

Acc

Acc ...

Ma

Acc

No

Acc

No

Acc

No

Ms

No

No

Acc

Acc

No

No

No

No

No

Acc

No

Acc ...

{{M)|M is a TM that
does not accept (M) }

Diagonalization Revisited

 The diagonalization language, which we
denote L, is defined as

L,={(M)|M is aTM and M does not accept (M) }

 We constructed this language to be
different from the language of every TM.

- Theretore, L ¢ RE! Let’s go prove this.

L,={(M)|MisaTM and M does not accept (M) }
Theorem: L ¢ RE.

Proof: Assume for the sake of contradiction that L, € RE. This
means that there is a recognizer R for L.

Now, focus on what happens if we run recognizer R on its own
encoding (that is, running R on (R)). Since R is a recognizer for L,

we see that
R accepts (R) if and only if (R) € L.
By definition of L, we know that
(R) € L, if and only if R does not accept (R).
Combining the two above statements tells us that
R accepts (R) if and only if R does not accept (R).

This is impossible. We’ve reached a contradiction, so our
assumption was wrong, and so L, ¢ RE. l

Regular
Languages

HALT

All Languages

What This Means

 On a deeper philosophical level, the fact that non-
RE languages exist supports the following claim:

There are statements that
are true but not provable.

 Intuitively, given any non-RE language, there will
be some string in the language that cannot be
proven to be in the language.

« This result can be formalized as a result called
Godel's incompleteness theorem, one of the
most important mathematical results of all time.

e Want to learn more? Take Phil 152 or CS154!

What This Means

* On a more philosophical note, you could interpret
the previous result in the following way:

There are inherent limits about what
mathematics can teach us.

 There's no automatic way to do math. There are
true statements that we can't prove.

« That doesn't mean that mathematics is worthless.
It just means that we need to temper our
expectations about it.

Where We Stand

« We've just done a crazy, whirlwind tour of computability
theory:

« The Church-Turing thesis tells us that TMs give us a
mechanism for studying computation in the abstract.

 Universal computers - computers as we know them - are not
just a stroke of luck. The existence of the universal TM ensures
that such computers must exist.

« Self-reference is an inherent consequence of computational
power.

 Undecidable problems exist partially as a consequence of the
above and indicate that there are statements whose truth can't
be determined by computational processes.

« Unrecognizable problems are out there and can be discovered
via diagonalization. They imply there are limits to mathematical
proof.

The Big Picture

Recog-
nizer

Where We've Been

* The class R represents problems that can be
solved by a computer.

 The class RE represents problems where “yes”
answers can be verified by a computer.

Where We're Going

* The class P represents problems that can be
solved efficiently by a computer.

 The class NP represents problems where “yes”
answers can be verified efficiently by a
computer.

Next Time

 Introduction to Complexity Theory

 Not all decidable problems are created
equal!

e The Classes P and NP

 Two fundamental and important complexity
classes.

« The P = NP Question

« A literal million-dollar question!

Appendix: Verifiers and RE Languages

Theorem: Let L be a language. Then
L. € RE if and only if there is a
verifier V for L.

Where We’ve Been

State Elimination

NFA Regex

Thompson’s Algorithm

Where We're Going

Try all certificates

Verifier Recognizer

Enforce a step count

Verifiers and RE

« Theorem: If there is a verifier V for a language
L, then L € RE.

 Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

“Check an answer”
input string (w) D

" Verifier V
certificate (c) | for L

SR e

Verifiers and RE

« Theorem: If V is a verifier for L, then L. € RE.
* Proof sketch: Consider the following program:

bool isInL(string w) {
for (each string c) {
if (V accepts (w, c)) return true;
}

}

If w € L, there is some ¢ € 2* where V accepts (w, c).
The function isInL tries all possible strings as
certificates, so it will eventually find ¢ (or some other
working certificate), see V accept (w, c), then return
true. Conversely, if isInL(w) returns true, then there
was some string c¢ such that V accepted (w, c), so we
seethat we L. R

Verifiers and RE

e Theorem: If L € RE, then there is a
verifier for L.

* Proof Goal: Beginning with a recognizer
M for the language L, show how to
construct a verifier V for L.

Verifiers and RE

e Theorem: If L. € RE, then there is a verifier for L.

* Proof sketch: Let L be a RE language and let M be a recognizer
for it. Consider this function:

bool checkIsInL(string w, int c) {
TM M = /* hardcoded version of a recognizer for L */;
set up a simulation of M running on w;
for (int 1 =0; 1 < c; i1++) {
simulate the next step of M running on W;

}

return whether M is in an accepting state;

Note that checkIsInL always halts, since each step takes only finite
time to complete. Next, notice that if there is a ¢ where
checkIsInL(w, c) returns true, then M accepted w after running for
c steps, so w € L. Conversely, if w € L, then M accepts w after
some number of steps (call that number ¢). Then checkIsInL(w, c)
will run M on w for ¢ steps, watch M accept w, then return true.

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81

